Posted by todsacerdoti 22 hours ago
struct ListNode(T) {
ListNode* next;
T data;
}
T!int node;
Why suffer the C preprocessor? Using preprocessor macros is like using a hammer for finish carpentry, rather than a nail gun. A nail gun is 10x faster, drives the nail perfectly every time, and no half moon dents in your work.On some projects you must use C.
My compilers were originally written in C. I started using the C preprocessor to do metaprogramming. After some years I got fed up with it and removed nearly all of the preprocessor use, and never looked back. My code was much easier to understand.
An amusing story: long ago, a friend of mine working for Microsoft was told by a team leader that a 50K program had a bug in it, and sadly the developer was long gone. He'd assigned programmer after programmer to it, who could not fix it. My friend said he'd give it a try, and had it fixed in 2 hours.
The source code was written in Microsoft MASM, where the M stood for "Macro". You can guess where this is going. The developer had invented his own high level language using the macro system (which was much more powerful than C's). Unfortunately, he neglected to document it, and the other programmers spent weeks studying it and could not figure it out.
The leader, astonished, asked him how he figured it out in 2 hours? My friend said simple. He assembled it to object code, then disassembled the object code with obj2asm (a disassembler I wrote that converts object code back to source code). He then immediately found and fixed the bug, and checked in the "new" source code which was the disassembled version.
I've seen many very smart and clever uses of the C macros, the article is one of them. But isn't it time to move on?
Currently, ImportC runs cpp and then lexes/parses the resulting C code for use in D.
However, the problem that I have with this idea as a general solution for generics is that it doesn't seem to solve any of the problems posed by the most similar alternative: just having a macro that defines a struct. The example shown in the article:
#define List(type) union { \
ListNode *head; \
type *payload; \
}
could just as easily be: #define List(type) struct { \
type *head; \
/* Other data, such as node/element count... */ \
}
(As long as our nodes are maximally aligned - which they will be if they're dynamically allocated - it doesn't matter whether the pointer we store to the list head is ListNode *, type *, void *, or any other regular pointer type.)The union approach has the same drawback as the struct approach: untagged unions are not compatible with each other, so we have to typedef the container in advance in order to pass in and out of functions (as noted in the article). This is broadly similar to the drawback from which the "generic headers" approach (which I usually call the "pseudo-template" approach) suffers, namely the need for boilerplate from the user. However, the generic-headers/pseudo-template approach is guaranteed to generate the most optimized code thanks to function specialization[1], and it can be combined with another technique to provide a non-type-prefixed API, as I discuss here[2] and demonstrate in practice here[3].
I'd also like to point to my own approach to generics[4] that is similar to the one described here in that it hides extra type information in the container handle's type - information that is later extracted by the API macros and passed into the relevant functions. My approach is different in that rather than exploiting unions, it exploits functions pointers' ability to hold multiple types (i.e. the return type and argument types) in one pointer. Because function pointers are "normal" C types, this approach doesn't suffer from the aforementioned typedef/boilerplate problem (and it allows for API macros that are agnostic to both element type/s and container type). However, the cost is that the code inside the library becomes rather complex, so I usually recommend the generic-headers/pseudo-template approach as the one that most people ought to take when implementing their own generic containers.
[1] https://gist.github.com/attractivechaos/6815764c213f38802227...
[2] https://github.com/JacksonAllan/CC/blob/main/articles/Better...