Posted by chmaynard 17 hours ago
https://github.com/mbrock/filnix
It's working. It builds tmux, nethack, coreutils, Perl, Tcl, Lua, SQLite, and a bunch of other stuff.
Binary cache on https://filc.cachix.org so you don't have to wait 40 minutes for the Clang fork to build.
If you have Nix with flakes on a 64-bit Linux computer, you can run
nix run github:mbrock/filnix#nethack
right now!How does python work? Of course I can just add filc.python to my system, but if I `python3 -m pip install whatever` will it just rebuild any C modules with the fil-c compiler?
Fil-C compiled flatpaks might be a interesting target as well for normal desktop users. (e.g. running a browser)
I wonder if GPU graphics are possible in Fil-C land? Perhaps only if whole mesa stack is compiled using Fil-C as well, limiting GPU use to open drivers?
Pizlo seems to have found an astonishingly cheap way to do the necessary pointer checking, which hopefully I will be able to understand after more study. (The part I'm still confused about is how InvisiCaps work with memcpy.)
tialaramex points out that we shouldn't expect C programmers to be excited about Fil-C. The point tialaramex mentions is "DWIM", like, accessing random memory and executing in constant time, but I think most C programmers won't be willing to take a 4× performance hit. After all, if they wanted to be using a slow language, they wouldn't be writing their code in C. But I think that's the wrong place to look for interest: Fil-C's target audience is users of C programs, not authors of C programs. We want the benefits of security and continued usage of existing working codebases, without having to pay the cost to rewrite everything in Rust or TypeScript or whatever. And for many of us, much of the time, the performance hit may be acceptable.
Apple has a memory-safer C compiler/variant they use to compile their boot loaders:
What is the 64-bit-presenting representation of pointers in Fil-C?
That is, what does %p return and how does that work as a pointer?
And it's not just the bounds-checking that's great -- it makes a bunch of C anti-patterns much harder, and it makes you think a lot harder about pointer ownership and usage. Really a great addition to the language, and it's source-compatible with empty macro-definitions (with two exceptions).
I think you’re thinking of something else
Also I'm really skeptical about your "hundreds of millions" number, even if we're talking about all the code that runs before the kernel starts. How do you figure? The entire Linux kernel doesn't contain a hundred millions of lines of code, and that includes all the drivers for network cards, SCSI controllers, and multiport serial boards that nobody's made in 30 years, plus ports to Alpha, HP PA-RISC, Loongson, Motorola 68000, and another half-dozen architectures. All of that contains maybe 30 million lines. glibc is half a million. Firefox 140.4.0esr is 33 million. You're saying that the bootloader is six times the size of Firefox?
Are you really suggesting that tens of gigabytes of source code are compiled into the bootloader? That would make the bootloader at least a few hundred megabytes of executable code, probably gigabytes, wouldn't it?
"Why Embedded Swift"
Reading Fil-C website's "InvisiCaps by example" page, I see that "Laundering Integers As Pointers" is disallowed. This essentially disqualifies Fil-C for low-level work, which makes for a substantial part of C programs.
(int2ptr for MMIO/pre-allocated memory is in theory UB, in practice just fine as long as you don't otherwise break aliasing rules (and lifetime rules in C++) - as the compiler will fail to track provenance at least once).
But that isn't really what Fil-C is aimed at - the value is, as you implied, in hardening userspace applications.
Fil-C already allows memory mapped I/O in the form of mmap.
The only thing missing that is needed for kernel level MMIO is a way to forge a capability. I don’t allow that right now, but that’s mostly a policy decision. It also falls out from the fact that InvisiCaps optimize the lower by having it double as a pointer to the top of the capability. That’s also not fundamental; it’s an implementation choice.
It’s true that InvisiCaps will always disallow int to ptr casts, in the sense that you get a pointer with no capability. You’d want MMIO code to have some intrinsic like `zunsafe_forge_ptr` that clearly calls out what’s happening and then you’d use that wherever you define your memory mapped registers.
There would still be ways to make it work with a more restricted intrinsic, if you didn't want to open up the ability for full pointer forging. At a high level, you're basically just saying "This struct exists at this constant physical address, and doesn't need initialisation". I could imagine a "#define UART zmmio_ptr(UART_Type, 0x1234)" - which perhaps requires a compile time constant address. Alternatively, it's not uncommon for embedded compilers to have a way to force a variable to a physical address, maybe you'd write something like "UART_Type UART __at(0x1234);". I believe this is technically already possible using sections, it's just a massive pain creating one section per struct for dozens and dozens.
Unfortunately the way existing code does it is pretty much always "#define UART ((UART_Type*)0x1234)". I feel like trying to identify this pattern is probably too risky a heuristic, so source code edits seem required to me.
Not allowing a cast from integer to pointer is the point of having pointers as capabilities in the first place.
Central in that idea of capabilities is that you can only narrow privileges, never widen them. An intptr_t would in-effect be a capability narrowed to be used only for hashing and comparison, with the right for reading and writing through it stripped away.
BTW, if you would store the uintptr_t then it would lose its notion of being a pointer, and Fil-C's garbage collector would not be able to trace it.
The C standard allows casts both ways, but the [u]intptr_t types are optional. However, C on hardware capability architectures' (CHERI, Elbrus, I dunno about AS/400) tend to make the type available anyway because the one-way cast is so common in real-world code.
#include <stdio.h>
int main()
{
const char c[] = "Howling\n";
char *p = (char*)c;
p[4] = 'o';
printf("%s", c);
return 0;
}
Somewhat to my surprise, it still compiles successfully with no warnings as C++ (renaming to deconst.cc and compiling with g++). I don't know C++ that well, since I've only been using it for 35 years, which isn't nearly long enough to learn the whole language unless you write a compiler for it.Same results with Debian clang (and clang++) version 14.0.6 with the same options.
Of course, if you change c[] to *c, it will segfault. But it still compiles successfully without warnings.
Laundering your pointer through an integer is evidently not necessary.
It's a concurrent GC.
If I wanted to go to kernel, I'd probably get rid of the GC. I've tweeted about what Fil-C would look like without GC. Short version: use-after-free would not trap anymore, but you wouldn't be able to use it to break out of the capability system. Similar to CHERI without its capability GC.
One interesting feature is that there might be some synergy there. The GC safepoints can be used to implement cooperative multitasking, with capabilities making it safe.
https://github.com/mbrock/filnix/blob/main/ports/analysis.md
This is still within the userspace application realm but it's good to know that Fil-C does have explicit capability-preserving operations (`zxorptr`, `zretagptr`, etc) to do e.g. pointer tagging, and special support for mapping pointers to integer table indices and back (`zptrtable`, etc).
https://people.cs.rutgers.edu/~santosh.nagarakatte/softbound...
CCured was another:
https://people.eecs.berkeley.edu/~necula/Papers/ccured_popl0...
Previous discussion:
2025 Safepoints and Fil-C (87 points, 1 month ago, 44 comments) https://news.ycombinator.com/item?id=45258029
2025 Fil's Unbelievable Garbage Collector (603 points, 2 months ago, 281 comments) https://news.ycombinator.com/item?id=45133938
2024 The Fil-C Manifesto: Garbage In, Memory Safety Out (13 points, 17 comments) https://news.ycombinator.com/item?id=39449500
1. How do we prevent loading a bogus lower through misaligned store or load?
Answer: Misaligned pointer load/stores are trapped; this is simply not allowed.
2. How are pointer stores through a pointer implemented (e.g. `*(char **)p = s`) - does the runtime have to check if *p is "flight" or "heap" to know where to store the lower?
Answer: no. Flight (i.e. local) pointers whose address is taken are not literally implemented as two adjacent words; rather the call frame is allocated with the same object layout as a heap object. The flight pointer is its "intval" and its paired "lower" is at the same offset in the "aux" allocation (presumably also allocated as part of the frame?).
3. How are use-after-return errors prevented? Say I store a local pointer in a global variable and then return. Later, I call a new function which overwrites the original frame - can't I get a bogus `lower` this way?
Answer: no. Call frames are allocated by the GC, not the usual C stack. The global reference will keep the call frame alive.
That leads to the following program, which definitely should not work, and yet does. ~Amazing~ Unbelievable:
#include <stdio.h>
char *bottles[100];
__attribute__((noinline))
void beer(int count) {
char buf[64];
sprintf(buf, "%d bottles of beer on the wall", count);
bottles[count] = buf;
}
int main(void) {
for (int i=0; i < 100; i++) beer(i);
for (int i=99; i >= 0; i--) puts(bottles[i]);
}Recompiling existing software written in C using Fil-C isn't also a great idea, since some modifications are likely needed, at least for fixing bugs found with usage of Fil-C. And after these bugs are fixed, why continue using Fil-C?
There’s nothing about how Fil-C is designed that constrains it to x86_64. It doesn’t strongly rely on x86’s memory model. It doesn’t strongly rely on 64-bit.
I’m focusing on one OS and arch until I have more contributors and so more bandwidth to track bugs across a wider set of platforms.
the performance overhead of this approach for most programs makes them run about four times more slowly
4x slower isn't the normal case. 4x is at the upper end of the overheads you'll see.
C is immensely powerful, portable and probably as fast as you can go without hand-coding in the architecture-specific assembly. Most of the world's information systems (our cyberstructure) rely directly or indirectly on C. And don't get me wrong, I'm a great enthusiast of the idea of sticking to memory-safe languages like Rust from now on.
The hard truth is will live with legacy C code, period. Pizlo's heroic effort bridges the gap so to speak, it kind of sandboxes userspace C in a way that inherently adds memory safety to legacy code. There are only a few corner cases now that can't be bothered by any slow-down vis-a-vis unsafe C, and the great majority of code across every industry would benefit much more from the reduced surface of exposure.