Posted by marojejian 11 hours ago
But suppose an extra attention head were added that queried the KV data from lower layers. At the very least, I imagine this might cleanly solve the STRAWBERRY problem: whatever layer has figured out that the prompt wants to count instances of R could attend to lower layers that actually perceive those Rs.
Isn't this sort of similar to latent looping? E.g. [1]. But actually as [2] argues, even that wasn't a good experiment because it used the very last hidden state, which is too close to the logits and loses most of the rich embedding structure. Perhaps you don't even need access to the state of anything except the penultimate hidden layer, since based on my vague reading of [3] the residual stream doesn't "lose information" as it passes deeper down the attention layers, so each block maybe manipulates a different subspace of the residual stream.
[1] https://arxiv.org/abs/2412.06769
[2] https://snimu.github.io/2025/03/30/multi-layer-language-head...
I imagine that conventional transformers kind of force this. If you train a transformer such that it needs to learn the ability to do tasks like “Repeat the following words: apple banana cat” then the model is sort of forced to internally propagate the input far enough along to be able to perform the task. But maybe if you pre-trained from scratch with an architecture where later layers get direct access to earlier layers and/or the raw input, then the model wouldn’t need to propagate information.
Or maybe it would all fall apart and something would go wrong with the gradients.
Decent comment via x: https://x.com/r0ck3t23/status/2002383378566303745
I continue to be fascinated by these architectures that: - Build in recurrence / inference scaling to transformers more natively. - Don't use full recurrent gradient traces, and succeed not just despite, but because of that.
Instead of big models that “brute force” the right answer by knowing a lot of possible outcomes, this model seems to come to results with less knowledge but more wisdom.
Kind of like having a database of most possible frames in a video game and blending between them instead of rendering the scene.
The notion of context window applies to the sequence, it doesn't really affect that, each iteration sees and attends over the whole sequence.
I'm not sure what you mean here, but there isn't a difference in the number of times a model runs during inference.
Here you go: https://arxiv.org/abs/2502.05171