Posted by ingve 1/15/2026
I buy a raspberry pi because I need a small workhorse - I understand adding RAM for local LLMs, but it would be like a raspberry pi with a GPU, why do i need it when a normal mini machine will have more ram, more compute capacity and better specs for cheaper?
I daresay they could charge more than a comparably specced computer (if they don't already) and they would still be a viable purchase.
Unless i'm missing something - which is where i'm like why not just buy a NUC with similiar RAM for far less.
[1] https://www.raspberrypi.com/news/introducing-raspberry-pi-ha...
Case closed. And that's extremely slow to begin with, the Pi 5 only gets what, a 32 bit bus? Laughable performance for a purpose built ASIC that costs more than the Pi itself.
> In my testing, Hailo's hailo-rpi5-examples were not yet updated for this new HAT, and even if I specified the Hailo 10H manually, model files would not load
Laughable levels of support too.
As another datapoint, I've recently managed to get the 8L working natively on Ubuntu 24 with ROS, but only after significant shenanigans involving recompiling the kernel module and building their library for python 3.12 that Hailo for some reason does not provide outside 3.11. They only support the Pi OS (like anyone would use that in prod) and even that is very spotty. Like, why would you not target the most popular robotics distro for an AI accelerator? Who else is gonna buy these things exactly?
YOLO for example.
If it could run whisper, it'd be a solid addition to a pi based home assistant setup.
That said, perhaps there is a niche for slow LLM inference for non-interactive use.
For example, if you use LLMs to triage your emails in the background, you don't care about latency. You just need the throughput to be high enough to handle the load.
I once tried to run a segmentation model based on a vision transformer on a PC and that model used somewhere around 1 GB for the parameters and several gigabytes for the KV cache and it was almost entirely compute bound. You couldn't run that type of model on previous AI accelerators because they only supported model sizes in the megabytes range.
That's also limited to 8Gb RAM so again you might be better off with a larger 16Gb Pi and using the CPU but at least the space is heating up.
With a lot of this stuff it seems to come down to how good the software support is. Raspberry Pis generally beat everything else for that.
The price point is still a little high for most tasks but I’m sure that will come down.