Posted by sidnarsipur 13 hours ago
As an example, we've been experimenting with letting users search free form text, and using LLMs to turn that into a structured search fitting our setup. The latency on the response from any existing model simply kills this, its too high to be used for something where users are at most used to the delay of a network request + very little.
There are plenty of other usecases like this where.
I think this is how I'm going to get my dream of Opus 3.7 running locally, quickly and cheaply on my mid-tier MacBook in 2030. Amazing. Anthropic et al will be able to make marginal revenue from licensing the weights of their frontier-minus-minus models to these folks.
> me: the moon
> Jimmy: The answer to "What is the capital of France?" I was looking for was the city of Paris, but that's not the correct response to the original question of the capital of France. The question that got cut off was actually "What is the capital of France?", and the response "There are plenty of times I look to groq for narrow domain responses" wasn't the answer I was looking for.
It is certainly fast, but I think there might be some caching issues somewhere.
What type of latency-sensitive applications are appropriate for a small-model, high-throughput solution like this? I presume this type of specialization is necessary for robotics, drones, or industrial automation. What else?
"""
We're going to see a further bifurcation in inference use-cases in the next 12 months. I'm expecting this distinction to become prominent:
(A) Massively parallel (optimize for token/$)
(B) Serial low latency (optimize for token/s).
Users will switch between A and B depending on need.
Examples of (A):
- "Use subagents to search this 1M line codebase for DRY violations subject to $spec."
An example of (B):
- "Diagnose this one specific bug."
- "Apply these text edits".
(B) is used in funnels to unblock (A).
"""
1. Intent based API gateways: convert natural language queries into structured API calls in real time (eg., "cancel my last order and refund it to the original payment method" -> authentication, order lookup, cancellation, refund API chain).
2. Of course, realtime voice chat.. kinda like you see in movies.
3. Security and fraud triage systems: parse logs without hardcoded regexes and issue alerts and full user reports in real time and decide which automated workflows to trigger.
4. Highly interactive what-if scenarios powered by natural language queries.
This effectively gives you database level speeds on top of natural language understanding.
The quantization looks pretty severe, which could make the comparison chart misleading. But I tried a trick question suggested by Claude and got nearly identical results in regular ollama and with the chatbot. And quantization to 3 or 4 bits still would not get you that HOLY CRAP WTF speed on other hardware!
This is a very impressive proof of concept. If they can deliver that medium-sized model they're talking about... if they can mass produce these... I notice you can't order one, so far.
Additionally LLMs have been tested, found valuable in benchmarks, but not used for a large number of domains due to speed and cost limitations. These spaces will eat up these chips very quickly.
It could give a boost to the industry of electron microscopy analysis as the frontier model creators could be interested in extracting the weights of their competitors.
The high speed of model evolution has interesting consequences on how often batches and masks are cycled. Probably we'll see some pressure on chip manufacturers to create masks more quickly, which can lead to faster hardware cycles. Probably with some compromises, i.e. all of the util stuff around the chip would be static, only the weights part would change. They might in fact pre-make masks that only have the weights missing, for even faster iteration speed.
Obviously not for any hard applications, but for significantly better autocorrect, local next word predictions, file indexing (tagging I suppose).
The efficiency of such a small model should theoretically be great!